概要:方向)。列车两侧计算区域宽度都为30m。区域宽度为63.2m(x 方向)。此时,列车和周围流场基本达到充分发展,计算区域更大时,计算结果改变很小。1.3 计算网格网格的划分既要考虑到模拟计算收敛的时间、计算机计算能力的限制,又要充分考虑高速列车在挡风墙保护下强风环境中外流场特性模拟的准确性,根据高速列车在强风作用下外流场的特点,列车与挡风墙之间的空气流场变化最为剧烈,这个区域和列车周围的区域和挡风墙周围区域是本次模拟研究主要关注的区域,因此这三个区域的网格要求最为严格。离列车稍远的区域,列车运动对这个区域空气流场的影响趋于平稳,因此网格的尺寸可以适当的放大。根据离列车越远流场就越平稳的原则,网格的尺寸应该随与列车距离的增大而逐渐增大。这种由密逐渐变疏的计算区域网格可以使得模拟计算在列车附近真实反映空气动力特性,又严格的控制了网格的数量,从而减少了对计算机资源的占用,缩短了计算时间,提高了计算效率。根据以上原则,对列车与挡风墙周围流场区域,单元线长度为0.25m,从靠近列车侧向外侧发散区域的单元线长度从0.25m 扩大至1m,直至模型最外侧,单元线长度扩大至4m。整个
挡风墙的疏透度对列车运行安全的影响研究,标签:毕业设计怎么写,毕业设计范文,http://www.88haoxue.com
1.3 计算网格
网格的划分既要考虑到模拟计算收敛的时间、计算机计算能力的限制,又要充分考虑高速列车在挡风墙保护下强风环境中外流场特性模拟的准确性,根据高速列车在强风作用下外流场的特点,列车与挡风墙之间的空气流场变化最为剧烈,这个区域和列车周围的区域和挡风墙周围区域是本次模拟研究主要关注的区域,因此这三个区域的网格要求最为严格。离列车稍远的区域,列车运动对这个区域空气流场的影响趋于平稳,因此网格的尺寸可以适当的放大。根据离列车越远流场就越平稳的原则,网格的尺寸应该随与列车距离的增大而逐渐增大。这种由密逐渐变疏的计算区域网格可以使得模拟计算在列车附近真实反映空气动力特性,又严格的控制了网格的数量,从而减少了对计算机资源的占用,缩短了计算时间,提高了计算效率。
根据以上原则,对列车与挡风墙周围流场区域,单元线长度为0.25m,从靠近列车侧向外侧发散区域的单元线长度从0.25m 扩大至1m,直至模型最外侧,单元线长度扩大至4m。整个计算区域的网格数约100 万。
1.4 数学模型
高速列车和外流场中流体简化为黏性、不可压缩、定常、绝热流体,对应的时均方程组包括:连续性方程、动量方程、k 方程、e 方程,这6 个方程和一系列壁面函数就构成了本次模拟计算完整的数学模型。
1.5 边界条件
模拟计算中,设定列车是静止不动的,入口风速采用合成风。合成风是列车速度与风速矢量的叠加。由于在不同风向角下,相同车速和风速的合成速度并不相同,即车辆受到的气动力不仅与列车运行速度、环境风速度有关,还与环境风的风向角有关。侧风与火车运行方向之间的风向角α 分别取0°,15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,165°,180°。外来风速分别取10m/s,20 m/s,30 m/s 和40 m/s 四种情况。40m/s 的风速基本达到自然风速的最大值。列车运行速度选定为75 m/s(270 公里每小时)。边界条件设定为:
1:入口边界条件:列车和侧风合成速度人口;
2:出口边界条件:自由出流;
3:列车表面边界条件:固体壁面边界;
4:地面与挡风墙边界条件:相对列车的速度为反方向的列车运行速度。
2 计算结果分析
为便于分析列车受气动力作用后的偏转趋势,对列车气动力和气动力矩在直角坐标系中进行分解,从头车指向尾车方向为z 方向,竖直向上的从地面指向天空的方向为y 方向,水平面上与列车运行方向垂直的方向为x 方向。形成x
上一篇:无线湿温度监测系统的设计
最新更新
推荐热门