概要: 或 或2.即男同学有5人或6人,女同学相应为3人或2人. 3.能组成 (注意不能用 点为顶点)个四边形, 个三角形.探究活动同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,那么四张不同的分配万式可有多少种?解 设四人分别为甲、乙、丙、丁,可从多种角度来解.解法一 可将拿贺卡的情况,按甲分别拿乙、丙、丁制作的贺卡的情形分为三类,即:甲拿乙制作的贺卡时,则贺卡有3种分配方法.甲拿丙制作的贺卡时,则贺卡有3种分配方法.甲拿丁制作的贺卡时,则贺卡有3种分配方法.由加法原理得,贺卡分配方法有3+3+3=9种.解法二 可从利用排列数和组合数公式角度来考虑.这时还存在正向与逆向两种思考途径.正向思考,即从满足题设条件出发,分步完成分配.先可由甲从乙、丙、丁制作的贺卡中选取1张,有 种取法,剩下的乙、丙、丁中所制作贺卡被甲取走后可在剩下的3张贺卡中选取1张,也有 种,最后剩下2人可选取的贺卡即是这2人所制作的贺卡,其取法只有互取对方制作贺卡1种取法.根据乘法原理,贺卡的分配方法有 (种).逆向思考,即从4人取4张不同贺卡的所有取
组合,标签:高三数学教案大全,http://www.88haoxue.com3.能组成 (注意不能用 点为顶点)个四边形, 个三角形.
探究活动
同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,那么四张不同的分配万式可有多少种?
解 设四人分别为甲、乙、丙、丁,可从多种角度来解.
解法一 可将拿贺卡的情况,按甲分别拿乙、丙、丁制作的贺卡的情形分为三类,即:
甲拿乙制作的贺卡时,则贺卡有3种分配方法.
甲拿丙制作的贺卡时,则贺卡有3种分配方法.
甲拿丁制作的贺卡时,则贺卡有3种分配方法.
由加法原理得,贺卡分配方法有3+3+3=9种.
解法二 可从利用排列数和组合数公式角度来考虑.这时还存在正向与逆向两种思考途径.
正向思考,即从满足题设条件出发,分步完成分配.先可由甲从乙、丙、丁制作的贺卡中选取1张,有 种取法,剩下的乙、丙、丁中所制作贺卡被甲取走后可在剩下的3张贺卡中选取1张,也有 种,最后剩下2人可选取的贺卡即是这2人所制作的贺卡,其取法只有互取对方制作贺卡1种取法.根据乘法原理,贺卡的分配方法有 (种).
逆向思考,即从4人取4张不同贺卡的所有取法中排除不满足题设条件的取法.不满足题设条件的取法为,其中只有1人取自己制作的贺卡,其中有2人取自己制作的贺卡,其中有3人取自己制作的贺卡(此时即为4人均拿自己制作的贺卡).其取法分别为 1.故符合题设要求的取法共有 (种).
说明(1)对一类元素不太多而利用排列或组合计算公式计算比较复杂,且容易重复遗漏计算的排列组合问题,常可采用直接分类后用加法原理进行计算,如本例采用解法一的做法.
(2)设集合 ,如果S中元素的一个排列 满足 ,则称该排列为S的一个错位排列.本例就属错位排列问题.如将S的所有错位排列数记为 ,则 有如下三个计算公式(李宇襄编著《组合数学》,北京师范大学出版社出版):
①
②
③
上一篇:排列
最新更新
推荐热门