概要:摘要:“目标引领,问题设计,学案教学”是在“基于问题设计的中学数学课堂教学策略研究”中探索出的一种模式。在这种模式下的教学设计是教师在认真研读教材、深刻理解教材的基础上,根据学情,灵活地整合、重组教学内容,制定恰当的教学目标,编制科学的、让学生乐于学习、敏于思考、敢于分享的学案,并在课堂上以问题为主线展开教学。问题如何设计、如何恰时恰点地提出、如何用好该问题,则是一节课成败的关键。该教学设计的创新之处在于最初的问题是由学生自己提出的,学生自然会以很高的兴致去尝试解决,从而积极主动认真地完成一节课的学习任务。 关键词:提出问题;解决问题;消元思想;体味文化 一、内容和内容解析 内容 人教版《义务教育课程标准实验教科书·数学》七年级下册“8.2 消元──二元一次方程组的解法”。 内容解析 现实生活中存在大量问题涉及多个未知数,其中许多问题中的数量关系是一次(也称线性)的,而方程组则是解决这些问题的有力工具. 学生在小学阶段已经学习了解简易方程,在七年级上学期系统学习了解一元一次方程。解
七年级数学下册“8.2 消元──二元一次方程组的解法”教学设计,标签:七年级数学教学设计模板,http://www.88haoxue.com
摘 要:“目标引领,问题设计,学案教学”是在“基于问题设计的中学数学课堂教学策略研究”中探索出的一种模式。在这种模式下的教学设计是教师在认真研读教材、深刻理解教材的基础上,根据学情,灵活地整合、重组教学内容,制定恰当的教学目标,编制科学的、让学生乐于学习、敏于思考、敢于分享的学案,并在课堂上以问题为主线展开教学。问题如何设计、如何恰时恰点地提出、如何用好该问题,则是一节课成败的关键。该教学设计的创新之处在于最初的问题是由学生自己提出的,学生自然会以很高的兴致去尝试解决,从而积极主动认真地完成一节课的学习任务。
关键词:提出问题;解决问题;消元思想;体味文化
一、内容和内容解析
内容
人教版《义务教育课程标准实验教科书·数学》七年级下册“8.2 消元──二元一次方程组的解法”。
内容解析
现实生活中存在大量问题涉及多个未知数,其中许多问题中的数量关系是一次(也称线性)的,而方程组则是解决这些问题的有力工具.
学生在小学阶段已经学习了解简易方程,在七年级上学期系统学习了解一元一次方程。解二元一次方程组的教学是在前面学习的基础上对方程的进一步研究和学习“元增多”(一元→二元),而到九年级将解决“次增高”(一次→二次)。
本节教学的核心是“消元”,从讨论解方程组的需要出发,引导学生从解决问题的基本策略的角度(转化思想:多元(新问题)→一元(旧问题)),实现问题的解决.这里的转化亦即消元化归思想,认知策略是逐步减少未知数的个数,以使方程组化归为一元方程,即先解出一个未知数,然后逐步解出其他未知数.这对学生的能力提升以及后续学习非常重要.在这种思想的指导下,结合学生对同一个问题的不同解方法对照,发现用代入的方法能够实现消元,不仅对消元思想的理解由抽象到具体,而且找出了解二元一次方程组的一种基本方法──代入消元法.
教学重点
解决问题的一般思路:
转化(化繁为简,化难为易,化新为旧);
对消元化归思想的初步理解;
用代入法解二元一次方程组.
二、目标和目标解析
(1)经历由实际问题抽象为方程组的过程,让学生体会其中蕴含的符号化、模型化的思想,进一步了解建模思想.
数学思想方法是蕴含在数学知识中的,学生对思想方法的理解和掌握是循序渐进的.在一元一次方程应用的学习中,学生已经对建模思想有了初步的了解,通过本节的教学,学生能更进一步地理解和体会这一思想,为本章第3节“实际问题与二元一次方程组”的顺利学习及分析问题、解决问题能力的提高奠定基础.
(2)通过对不同解题思路及方法的对照、比较,发现二元到一元的转化,理解消元思想的内涵.
数学教学承载着启迪学生智慧的重任,智慧的启迪源自学生对问题的主动探究(如观察、注意、思维、想象、记忆等),继而使问题得以解决.这一目标旨在消除部分学生对消元化归思想的模糊认识,真正理解消元思想,使学生能透过现象看到本质,激活思维,学会思考.
(3)经历二元到一元的转化过程,理解代入消元的本质;通过对代入法解二元一次方程组过程的提炼、归纳、整理,掌握这一方法的基本解题过程并会灵活应用.
对本节的教学不能仅停留在具体题目的具体解题过程上,而应不断加深学生对思想方法的领悟,让学生从思想方法的高度认识、理解所学内容。这样,我们和学生分享的才是能活学活用、能解决问题、真正意义上的知识,而非“死”知识.
(4)让学生阅读一次方程组的古今表示及解法,使学生了解一些有关数学史的知识,感受我国古代数学的光辉成就.
数学的应用不是数学价值的全部体现.因此,数学教学不仅要培养学生应用数学知识、方法解决问题的能力,更承担着培养学生良好数学素养的责任.这就要求我们的课堂教学在传播知识的同时传播文化.
三、教学问题诊断分析
数学思想方法是具体的数学知识的灵魂,数学思想方法对一个人的影响往往要大于具体的数学知识.
在本章教材中,实际问题情境贯穿全章,本节对方程组解法的讨论也是在解实际问题的过程中进行的,因此建模的数学思想(方程思想)在这里得以充分体现。尽管在教学中教师会有意识地进行渗透、明确,但学生对这一思想的理解和体会也许并不会深刻.或许,他们依旧不会有意识地、主动地在这种数学思想指导下对问题进行分析,必将导致分析问题的盲目性,就会不可避免地走弯路.
用代入消元法解二元一次方程如果仅停留在模仿、生搬硬套的水平上的话,方法本身并不难,经过大量题组的机械训练,相信绝大部分学生都能掌握这个方法,但对学生思维的发展、学习能力的提高毫无益处.以后在其他的问题情境中遇到需要代入或消元的方法时,学生会感到茫然、束手无策.
因此,本节的教学难点是:对数学思想方法的理解,尤其是对用代入的方法实现消元的主动理解.突破这一难点的关键是给学生充足的思考、探索、交流的时间,让他们的思维自然流淌,使消元“水到渠成”,从而“悟”出消元的必然.
四、教学过程设计
(一)情景导课
背景材料:老师在我们学校代三个班的数学,所教学生共143人.
问题1:你能提出什么数学问题?如何解决?
学生可能提出的问题:
www.88haoxue.com
(1)每个班有多少个学生?
(2)男生、女生各多少个?
……
针对问题(2),增加条件:男生人数的2倍比女生人数的3倍少14人.
学生活动:解决问题;展示方法.
教师点拨:(1)用建模思想引领思维,实际问题-数学问题.
(2)一元一次方程会解但难列,因为要综合考虑问题中的各种等量关系;二元一次方程组易列,因为可以分别考虑两个等量关系,但不会解。从而产生了新问题。方程组对于解含多个未知数的问题很有效,它的优越性会随着问题中未知数的增加而体现得更加明显.
【设计意图】(1)由于是借班上课,以此形式开课既能创造轻松的氛围、拉近师生之间的距离,又可以巧妙引出本节课的教学内容.(2)问题是学生自己提出的,因此他们解决这个问题的积极性更高,思维更开阔,各种方法的出现便会成为必然.(3)让学生体会到方程组在解决实际问题中的优越性.
(二) 解决问题
问题2:怎么解二元一次方程组呢?
追问:为什么要这样做?依据是什么?
你的解题思路是什么?
你的解题方法的名称是什么?为什么可以这样归纳?
(学生思考、交流.)
教师明确:转化思想──新问题转化成旧问题;
消元思想──将未知数的个数由多化少,逐一解决.
(学生展示自己的方法.)
师生交流,达成共识,明确思路:变形—代入—求解—写解。
教师规范解题过程,进而形成概念:
代入消元法──把二元一次方程组中的一个方程变形成用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.
【设计意图】我们一直强调让学生“知其然,而且要知其所以然”.但学生往往停留在对知识或方法的表层理解的水平上,究其原因,还是没有形成较强的问题意识,不习惯于多问个“为什么是这样的”、“这样做的依据是什么”等问题.因此,教学应不失时机地培养学生养成良好的问题意识.在问题的引导下,鼓励学生投入到活动中,并留给学生足够的独立思考和自主探索的时间和空间,从而让学生积极、主动地思考,随着思维的自然流淌,“顺势”自然地理解消元思想,解决问题的思路逐渐清晰. 通过探索实践,体验知识方法的形成过程,发现代入消元法的由来及过程,真正体会消元思想.
练习1 你能把下列方程写成用含x的式子表示y的形式吗?
(1)3x+y-1=0;
(2)2x-y=3;
(3)2y-4x=7。
【设计意图】变形其实是解含字母系数的方程,是学生容易出错的地方,这个问题的设置是为代入法做准备.
练习2 解方程组
![]()
[1] [2] 下一页
Tag:七年级数学教学设计,七年级数学教学设计模板,教学设计 - 数学教学设计 - 七年级数学教学设计