您当前所在位置:
88好学网教育学习大全教学设计数学教学设计高二数学教学设计算法的概念 人教必修3» 正文

算法的概念 人教必修3

[07-12 16:54:06]   来源:http://www.88haoxue.com  高二数学教学设计   阅读:68202

概要:是否成立?若是,则x1、x2之间的任意值均为满足条件的近似根;若否,则返回第二步.说明:按以上步骤,我们将依次得到课本第4页的表1-1和图1.1-1.于是,开区间(1.4140625,1.41796875)中的实数都满足假设条件的原方程是近似根.利用TI-voyage200图形计算器演示:运行结果:www.88haoxue.com练习1:写出解方程x2-2x-3=0的一个算法。解:算法1:第一步:移项,得x2-2x-3=0;①第二步:①式两边同加1并配方,得(x-1)2=4;②第三步:②式两边开方,得x-1=±2;③第四步:解③得x=3或x=-1。算法2:第一步:计算方程的判别式判断其符号△=22+4×3=16>0;第二步:将a=1,b=-2,c=-3代入求根公式x=,得x1=3,x2=-1评析:比较两种算法,算法2更简单,步骤少,所以利用公式解决问题是最理想、合算的算法。因此在寻求算法的过程中,首先是利用公式。下面设计一个求一般的一元二次方程ax2+bx+c=0的根的算法如下:第一步:计算△=b2+4ac;第二步:若△<0;第三步:输出方

算法的概念 人教必修3,标签:高二数学教学设计模板,http://www.88haoxue.com
是否成立?若是,则x1、x2之间的任意值均为满足条件的近似根;若否,则返回第二步.

说明:按以上步骤,我们将依次得到课本第4页的表1-1和图1.1-1.于是,开区间(1.4140625,1.41796875)中的实数都满足假设条件的原方程是近似根.

利用TI-voyage200图形计算器演示:

运行结果:


www.88haoxue.com

练习1:

写出解方程x2-2x-3=0的一个算法。

解:算法1

第一步:移项,得x2-2x-3=0;①

第二步:①式两边同加1并配方,得(x-1)2=4;②

第三步:②式两边开方,得x-1=±2;③

第四步:解③得x=3或x=-1。

算法2

第一步:计算方程的判别式判断其符号△=22+4×3=16>0;

第二步:将a=1,b=-2,c=-3代入求根公式x=,

得x1=3,x2=-1

评析:比较两种算法,算法2更简单,步骤少,所以利用公式解决问题是最理想、合算的算法。因此在寻求算法的过程中,首先是利用公式。

下面设计一个求一般的一元二次方程ax2+bx+c=0的根的算法如下:

第一步:计算△=b2+4ac;

第二步:若△<0;

第三步:输出方程无实根;

第四步:若△≥0;

第五步:计算并输出方程根x1,2=。

练习2、求1×3×5×7×9×11的值,写出其算法。
第一步,先求1×3,得到结果3;
第二步,将第一步所得结果3再乘以5,得到结果15;
第三步,再将15乘以7,得到结果105;
第四步,再将105乘以9,得到945;
第五步,再将945乘以11,得到10395,即是最后结果。

评析:求解某个问题的算法不同于求解一个具体问题的方法,算法必须能够解决一类问题,并且能够重复使用;算法过程要能一步一步地执行,每一步操作必须确切,能在有限步后得出结果。

练习3、有蓝和黑两个墨水瓶,但现在却错把蓝墨水装在了黑墨水瓶中,黑墨水错装在了蓝墨水瓶中,要求将其互换,请你设计算法解决这一问题。

分析:由于两个墨水瓶中的墨水不能直接交换,故可以考虑通过引入第三个空墨水瓶的办法进行交换。

解:算法步骤如下:

第一步:取一只空的墨水瓶,设其为白色;

第二步:将黑墨水瓶中的蓝墨水装入白瓶中;

第三步:将蓝墨水瓶中的黑墨水装入黑瓶中;

第四步:将白瓶中的蓝墨水装入蓝瓶中;

第五步:交换结束。

评析:对于这种非数值性问题的算法设计问题,应当首先建立过程模型,根据过程设计步骤,完成算法。

小结

1、算法概念和算法的基本思想

(1)算法与一般意义上具体问题的解法的联系与区别;

(2)算法的五个特征。

2、利用算法的思想和方法解决实际问题,能写出一此简单问题的算法

3、两类算法问题

(1)数值性计算问题,如:解方程(或方程组),解不等式(或不等式组),套用公式判断性的问题,累加,累乘等一类问题的算法描述,可通过相应的数学模型借助一般数学计算方法,分解成清晰的步骤,使之条理化即可。

(2)非数值性计算问题,如:排序、查找、变量变换、文字处理等需先建立过程模型,通过模型进行算法设计与描述。

4、利用TI-voyage200图形计算器演示时,开始学生看,想,探究,然后模范、创新。图形计算器为学生创建一个自我发挥的平台。

作业:(课本第4页练习)

1、任意给定一个正实数,设计一个算法求以这个数为半径的圆的面积.

解:算法步骤:

第一步:输入任意一个正实数r;

第二步:计算以r为半径的圆的面积:

第三步:输出圆的面积S.

2、任意给定一个大于1的正整数n,设计一个算法求出n的所有因数.

解:算法步骤:

第一步:依次以2~(n-1)为除数去除n,检查余数是否为0.若是,则是n的因数;若不是,则不是n的因数;

第二步:在n的因数中加入1和n;

第三步:输出n的所有因数.

利用TI-voyage200图形计算器演示:

运行结果:

(即32的公因数为1,2,4,8,16,32)


上一页  [1] [2] [3] 


Tag:高二数学教学设计高二数学教学设计模板教学设计 - 数学教学设计 - 高二数学教学设计
》《算法的概念 人教必修3》相关文章