您当前所在位置:
88好学网范文常识教案大全数学教案八年级数学教案第四册一元二次方程实数根错例剖析课» 正文

第四册一元二次方程实数根错例剖析课

[05-16 23:50:19]   来源:http://www.88haoxue.com  八年级数学教案   阅读:680

概要:错解:△=[-2(m+2)]2-4(m2-1) =16 m+20 ∵ △≥0 ∴ 16 m+20≥0, ∴ m≥ -5/4 又 ∵ m2-1≠0, ∴ m≠±1 ∴ m的取值范围是m≠±1且m≥ - 错因剖析:此题只说(m2-1)x2-2 (m+2)x+1=0是关于未知数x的方程,而未限定方程的次数,所以在解题时就必须考虑m2-1=0和m2-1≠0两种情况。当m2-1=0时,即m=±1时,方程变为一元一次方程,仍有实数根。正解:m的取值范围是m≥- 例6 已知二次方程x2+3 x+a=0有整数根,a是非负数,求方程的整数根。错解:∵方程有整数根,∴△=9-4a>0,则a<2.25又∵a是非负数,∴a=1或a=2令a=1,则x= -3± ,舍去;令a=2,则x1= -1、 x2= -2∴方程的整数根是x1= -1, x2= -2错因剖析:概念模糊。非负整数应包括零和正整数。上面答案仅是一部分,当a=0时,还可以求出方程的另两个整数根,x3=0, x4= -3正解:方程的整数根是x1= -1, x2= -2 , x3

第四册一元二次方程实数根错例剖析课,标签:八年级数学教案大全,http://www.88haoxue.com
错解:△=[-2(m+2)]2-4(m2-1)16 m+20

     ∵ △≥0

     ∴ 16 m+20≥0,

     ∴ m≥ -5/4

   又 ∵ m2-1≠0,

     ∴  m≠±1

     ∴ m的取值范围是m≠±1m≥ -

错因剖析:此题只说(m2-1)x2-2 (m+2)x+1=0是关于未知数x的方程,而未限定方程的次数,所以在解题时就必须考虑m2-1=0和m2-1≠0两种情况。当m2-1=0时,m=±1方程变为一元一次方程,仍有实数根。

正解:m的取值范围是m≥-  

例6  已知二次方程x2+3 x+a=0有整数根,a是非负数,求方程的整数根。

错解:∵方程有整数根,

∴△=9-4a>0,a<2.25

又∵a是非负数,∴a=1a=2

a=1,x= -3± 舍去a=2,x1= -1、 x2= -2

∴方程的整数根是x1= -1, x2= -2

错因剖析:概念模糊。非负整数应包括零和正整数。上面答案仅是一部分,当a=0时,还可以求出方程的另两个整数根,x3=0, x4= -3

正解:方程的整数根是x1= -1, x2= -2 ,  x3=0, x4= -3

 

【练习】

上一页  [1] [2] [3] [4] [5] [6]  下一页


Tag:八年级数学教案八年级数学教案大全教案大全 - 数学教案 - 八年级数学教案
》《第四册一元二次方程实数根错例剖析课》相关文章