概要:错解:△=[-2(m+2)]2-4(m2-1) =16 m+20 ∵ △≥0 ∴ 16 m+20≥0, ∴ m≥ -5/4 又 ∵ m2-1≠0, ∴ m≠±1 ∴ m的取值范围是m≠±1且m≥ - 错因剖析:此题只说(m2-1)x2-2 (m+2)x+1=0是关于未知数x的方程,而未限定方程的次数,所以在解题时就必须考虑m2-1=0和m2-1≠0两种情况。当m2-1=0时,即m=±1时,方程变为一元一次方程,仍有实数根。正解:m的取值范围是m≥- 例6 已知二次方程x2+3 x+a=0有整数根,a是非负数,求方程的整数根。错解:∵方程有整数根,∴△=9-4a>0,则a<2.25又∵a是非负数,∴a=1或a=2令a=1,则x= -3± ,舍去;令a=2,则x1= -1、 x2= -2∴方程的整数根是x1= -1, x2= -2错因剖析:概念模糊。非负整数应包括零和正整数。上面答案仅是一部分,当a=0时,还可以求出方程的另两个整数根,x3=0, x4= -3正解:方程的整数根是x1= -1, x2= -2 , x3
第四册一元二次方程实数根错例剖析课,标签:八年级数学教案大全,http://www.88haoxue.com ∵ △≥0
∴ 16 m+20≥0,
∴ m≥ -5/4
又 ∵ m2-1≠0,
∴ m≠±1
∴ m的取值范围是m≠±1且m≥ -
错因剖析:此题只说(m2-1)x2-2 (m+2)x+1=0是关于未知数x的方程,而未限定方程的次数,所以在解题时就必须考虑m2-1=0和m2-1≠0两种情况。当m2-1=0时,即m=±1时,方程变为一元一次方程,仍有实数根。
正解:m的取值范围是m≥-
例6 已知二次方程x2+3 x+a=0有整数根,a是非负数,求方程的整数根。
错解:∵方程有整数根,
∴△=9-4a>0,则a<2.25
又∵a是非负数,∴a=1或a=2
令a=1,则x= -3±
∴方程的整数根是x1= -1, x2= -2
错因剖析:概念模糊。非负整数应包括零和正整数。上面答案仅是一部分,当a=0时,还可以求出方程的另两个整数根,x3=0, x4= -3
正解:方程的整数根是x1= -1, x2= -2 , x3=0, x4= -3
【练习】
上一页 [1] [2] [3] [4] [5] [6] 下一页
上一篇:第四册角的平分线
最新更新
推荐热门