您当前所在位置:
88好学网教育学习大全学习方法高三学习方法高三数学学习方法高三立体几何章末综合测试题» 正文

高三立体几何章末综合测试题

[07-25 14:24:35]   来源:http://www.88haoxue.com  高三数学学习方法   阅读:68268

概要:所以A1C1=B1C1,所以C1E⊥A1B1.又C1E∩OE=E,所以A1B1⊥平面OC1E,因为OC1⊂平面OC1E,所以OC1⊥A1B1.(2)如图,以O为原点,OE→,OA→,OC→所在方向分别为x,y,z轴的正方向建立空间直角坐标系O-xyz,则A(0,2,0),A1(4,2,0),B1(4,-2,0),C1(2,0,23),设平面AB1C1的法向量为n1=(x1,y1,z1),则有n1•AB1→=0,n1•AC1→=0⇒x1,y1,z1•4,-4,0=0,x1,y1,z1•2,-2,23=0⇒x1=y1,z1=0,令x1=1,则n1=(1,1,0).设平面A1B1C1的法向量为n2=(x2,y2,z2),则有n2•A1B1→=0,n2•A1C1&r

高三立体几何章末综合测试题,标签:高三数学学习方法介绍,http://www.88haoxue.com
所以A1C1=B1C1,所以C1E⊥A1B1.
又C1E∩OE=E,
所以A1B1⊥平面OC1E,
因为OC1⊂平面OC1E,所以OC1⊥A1B1.
(2)如图,以O为原点,OE→,OA→,OC→所在方向分别为x,y,z轴的正方向建立空间直角坐标系O-xyz,
则A(0,2,0),A1(4,2,0),B1(4,-2,0),C1(2,0,23),
设平面AB1C1的法向量为n1=(x1,y1,z1),则有
n1•AB1→=0,n1•AC1→=0⇒
x1,y1,z1•4,-4,0=0,x1,y1,z1•2,-2,23=0⇒x1=y1,z1=0,
令x1=1,则n1=(1,1,0).
设平面A1B1C1的法向量为n2=(x2,y2,z2),则有
n2•A1B1→=0,n2•A1C1→=0⇒x2,y2,z2•0,-4,0=0,x2,y2,z2•-2,-2,23=0
⇒y2=0,x2=3z2,令z2=1,则n2=(3,0,1).
所以cos〈n1,n2〉=n1•n2|n1|•|n2|=32×2=64,
所以平面AB1C1与平面A1B1C1所成的角的余弦值是64.
20.(12分)如图所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.
(1)求证:B1D1∥平面A1BD;
(2)求证:MD⊥AC;
(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.
 解析 (1)由直四棱柱概念,得BB1綊DD1,
∴四边形BB1D1D是平行四边形,
∴B1D1∥BD.
而BD⊂平面A1BD,B1D1⊄平面A1BD,∴B1D1∥平面A1BD.
(2)∵BB1⊥平面ABCD,AC⊂平面ABCD,
∴BB1⊥AC.
又∵BD⊥AC,且BD∩BB1=B,
∴AC⊥平面BB1D1D.
而MD⊂平面BB1D1D,
∴MD⊥AC.
(3)当点M为棱BB1的中点时,取DC的中点N,D1C1的中点N1,连接NN1交DC1于O,连接OM,如图所示.
∵N是DC的中点,BD=BC,∴BN⊥DC.
又∵DC是平面ABCD与平面DCC1D1的交线,
而平面ABCD⊥平面DCC1D1,
∴BN⊥平面DCC1D1.
又可证得,O是NN1的中点,(此括号内不是文章内容,来自www.88haoxue.com,阅读请跳过),∴BM綊ON,
即四边形BMON是平行四边形,
∴BN∥OM,∴OM⊥平面CC1D1D,
∵OM⊂平面DMC1,∴平面DMC1⊥平面CC1D1D.
21.(12分)如图所示,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2.E,F,G分别为线段PC,PD,BC的中点,现将△PDC折起,使平面PDC⊥平面ABCD.
(1)求证:PA∥平面EFG;
(2)求二面角G-EF-D的大小.

解析 (1)∵PE=EC,PF=FD,∴EF∥CD.
又CD∥AB,∴EF∥AB,∴EF∥平面PAB.
同理,EG∥平面PAB.
又∵EF∩EG=E,∴平面PAB∥平面EFG,
而PA在平面PAB内,∴PA∥平面EFG.
(2)如图,以D为坐标原点,DA,DC,DF所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,则A(2,0,0),P(0,0,2),E(0,1,1),F(0,0,1),G(1,2,0),
易知DA→=(2 ,0,0)为平面EFD的一个法向量.
设平面EFG的一个法向量为n=(x,y,z),
又EF→=(0,-1,0),EG→=(1,1,-1),
由n•EF→=0,n•EG→=0,得x,y,z•0,-1,0=0,x,y,z•1,1,-1=0,
即y=0,x+y-z=0,取x=1,得n=(1,0,1).
设所求二面角为θ,cos θ=n•DA→|n||DA→|=222=22,
∴θ=45°,即二面角G-EF-D的平面角的大小为45°.
2 2.(12分)在侧棱垂直于底面的四棱柱ABCD-A1B1C1D1中,底面ABCD为菱形,且∠BAD=60°,A1A=AB,E为BB1延长线上的一点,D1E⊥面D1AC.
(1)求二面角E-AC-D1的大小;
(2)在D1E上是否存在一点P,使A1P∥平面EAC?若存在,求D1P∶PE的值;若不存在,说明理由.
 解析 设AC与BD交于O,建立如图所示的空间直角坐标系O-xyz,设AB=2,则A(3,0,0),B(0,1,0),C(-3,0,0),D(0,-1,0),D1(0,-1,2),A1(3,0,2).

(1)设E(0,1,2+h),则D1E→=(0,2,h),AC→=(-23,0,0),D1A→=(3,1,-2),
∵D1E⊥平面D1AC,
∴D1E⊥AC,D1E⊥D1A,
∴D1E→•AC→=0,D1E→•D1A→=0,
∴2-2h=0,∴h=1,即E(0,1,3),
∴D1E→=(0,2,1),AE→=(-3,1,3).
设平面EAC的法向量为m=(x,y,z),
则m⊥AC→,m⊥AE→,
∴x=0,-3x+y+3z=0,
令z=-1,得m=(0,3,-1),
∴cos〈m,D1E→〉=m•D1E→|m||D1E→|=22,
∴二面角E-AC-D1的大小为45°.
(2)设D1P→=λPE→=λ(D1E→-D1P→),
则D1P→=λ1+λD1E→=0,2λ1+λ,λ1+λ,
∴A1P→=A1D1→+D1P→
=(-3,-1,0)+0,2λ1+λ,λ1+λ
=-3,λ-11+λ,λ1+λ.
∵A1P∥平面EAC,
∴A1P→⊥m,
∴A1P→•m=0,
∴-3×0+3×λ-11+λ+(-1)×λ1+λ=0,
∴λ=32.
∴存在点P使A1P∥平面EAC,
此时D1P∶PE=3∶2.

上一页  [1] [2] [3] 


Tag:高三数学学习方法高三数学学习方法介绍学习方法 - 高三学习方法 - 高三数学学习方法
》《高三立体几何章末综合测试题》相关文章