您当前所在位置:
88好学网教育学习大全学习方法高三学习方法高三数学学习方法高三解析几何测试题» 正文

高三解析几何测试题

[07-25 14:24:40]   来源:http://www.88haoxue.com  高三数学学习方法   阅读:68494

概要:C.|OP|2=|OQ|•|OR| D.不确定解析:设P(x0,y0),双曲线的渐近线方程是y=±bax,直线AQ的方程是y=ba(x-a),直线AR的方程是y=-ba(x-a),直线OP的 方程是y=y0x0x,可得Qabx0bx0-ay0,aby0bx0-ay0,Rabx0bx0+ay0,aby0bx0+ay0.又x02a2-y02b2=1,可得|OP|2=|OQ|•|OR|.答案:C第Ⅱ卷(非选择共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.若两直线2x+y+2=0与ax+4y-2=0互相垂直,则其交点的坐标为__________.解析:由已知两直线互相垂直可得a=-2,则由2x+y+2=0,-x+2y-1=0得两直线的交点坐标为(-1,0).答案:(-1,0)14.如果点M是抛物线y2=4x的一点,F为抛物线的焦点,A在圆C:(x-4)2+(y-1)2=1上,那么|MA|+|MF|的最小值为__________.解析:如图所示,过点M作MB⊥l于点B.由抛物线定义,可得|MF|=|MB|,

高三解析几何测试题,标签:高三数学学习方法介绍,http://www.88haoxue.com
C.|OP|2=|OQ|•|OR|   D.不确定
解析:设P(x0,y0),双曲线的渐近线方程是y=±bax,直线AQ的方程是y=ba(x-a),直线AR的方程是y=-ba(x-a),直线OP的 方程是y=y0x0x,可得Qabx0bx0-ay0,aby0bx0-ay0,Rabx0bx0+ay0,aby0bx0+ay0.
又x02a2-y02b2=1,可得|OP|2=|OQ|•|OR|.
答案:C
第Ⅱ卷 (非选择 共90分)
二、填空题:本大题共4个小题,每小题5分,共20分.
13.若两直线2x+y+2=0与ax+4y-2=0互相垂直,则其交点的坐标为__________.
解析:由已知两直线互相垂直可得a=-2,
则由2x+y+2=0,-x+2y-1=0得两直线的交点坐标为(-1,0).
答案:(-1,0)
14.如果点M是抛物线y2=4x的一点,F为抛物线的焦点,A在圆C:(x-4)2+(y-1)2=1上,那么|MA|+|MF|的最小值为__________.
解析:如图所示,过点M作MB⊥l于点B.由抛物线定义,可得|MF|=|MB|,则|MA|+|MF|=|MA|+|MB|≥|CB|-1=4+1-1=4.
 
答案:4
15.若过原点O且方向向量为(m,1)的直线l与圆C:(x-1)2+y2=4相交于P、Q两点,则OP→•OQ→=__________.
解析:可由条件设出直线方程,联立方程运用韦达定理可求解,其中OP→•OQ→=x1x 2+y1y2是引发思路的关键.
答案:-3
16.如果F1为椭圆C:x22+y2=1的左焦点,直线l:y=x-1与椭圆C交于A、B两点,那么|F1A|+|F1B|的值为__________.
解析:将l:y=x-1代入椭圆C:x22+y2=1,可得x2+2(x-1)2-2=0,即3x2-4x=0,解之得x=0,或x =43.
可得A(0,-1),B43,13.又F1(-1,0),则|F1A|+|F1B|=(-1)2+12+43+12+132=823.
答案:823 
三、解答题:本大题共6小题,共70分.
17.(10分)已知椭圆 C:x2a2+y2b2=1(a>b>0)的长轴长为4.
(1)若以原点为圆心、椭圆短半轴为半径的圆与直线y=x+2相切,求椭圆焦点坐标;
(2)若点P是椭圆C上的任意一点,过原点的直线L与椭圆相交于M、N两点,记直线PM、PN的斜率分别为kPM、kPN,当kPM•kPN=-14时,求椭圆的方程.
解析:(1)由b=21+1,得b=2,
又 2a=4,a=2,a2=4,b2=2,c2=a2-b2=2,
故两个焦点坐标为(2,0),(-2,0).
(2)由于过原点的直线L与椭圆相交的两点M、N关于坐标原点对称,
不妨设M(x0,y0),N(-x0,-y0),P(x,y).
点M、N、P在椭圆上,则它们满足椭圆方程,
即有x02a2+y02b2=1,x2a2+y2b2=1,
两式相减,得y2-y02x2-x02=-b2a2.
由题意它们的斜率存在,则kPM=y-y0x-x0,kPN=y+y0x+x0,
kPM•kPN=y-y0x-x0•y+y0x+x0=y2-y02x2-x02=-b2a2,
则-b2a2=-14.
由a=2,得b=1.
故所求椭圆的方程为x24+y2=1.
18.(12分)已知两点M(-1,0),N(1,0),点P为坐标平面内的动点,满足|MN→|•|NP→|=MN→•MP→.
(1)求动点P的轨迹方程;
(2)若点A(t,4)是动点P的轨迹上的一点,K(m,0)是x轴上的一动点,试讨论直线AK与圆x2+(y-2)2=4的位置关系.
解析:(1)设P(x,y),则MN→=(2,0),NP→=(x-1,y),
MP→=(x+1,y).
由|MN→|•|NP→|=MN→•MP→,
得2(x-1)2+y2=2(x+1),
化简,得y2=4x.
故动点P的轨迹方程为y2=4x.
(2)由点A(t,4)在轨迹y2=4x上,
则42=4t,解得t=4,即A(4,4).
当m=4时,直线AK的方程为x=4, 
此时直线AK与圆x2+(y-2)2=4相离.
当m≠4时,直线AK的方程为y=44-m(x-m),
即4x+m(m-4)y-4m=0,
圆x2+(y-2)2=4的圆心(0,2)到直线AK的距离d=|2m+8|16+(m-4)2, 
令d=|2m+8|16+(m-4)2<2,解得m<1;
令d=|2m+8|16+(m-4)2=2,解得m=1;
令d=|2m+8|16+(m-4)2>2,解得m>1.
综上所述,当m<1时,直线AK与圆x2+(y-2)2=4相交;
当m=1时,直线AK与圆x2+(y-2)2=4相切 ;
当m>1时,直线AK与圆x2+(y-2)2=4相离.
 
19.(12分)如图,已知直线L:x=my+1过椭圆C:x2a2+y2b2=1(a>b>0)的右焦点F,且交椭圆C于A、B两点,若抛物线x2=43y的焦点为椭圆C的上顶点.
(1)求椭圆C的方程;
(2)若直线L交y轴于点M,且MA→=λ1AF→,MB→=λ2BF→,当m变化时,求λ1+λ2的值.
解析:(1)易知b=3,得b2=3.
又∵F(1,0),
∴c=1,a2=b2+c2=4,
∴椭 圆C的方程为x24+y23=1.
(2)设A(x1,y1),B(x2,y2),由x=my+1,3x2+4y2-12=0,
得(3m2+4)y2+6my-9= 0,Δ=144(m2+1)>0,
于是1y1+1y2=2m3.(*)
∵L与y轴交于点M0,-1m,又由MA→=λ1AF→,
∴x1,y1+1m=λ1(1-x1,-y1),
∴λ1=1-1my1.同理λ2=-1-1my2.
从而λ1+λ2=-2-1m1y1+1y2=-2-23=-83.
即λ1+λ2=-83.
20.(12分)设G、M分别为△ABC的重心与外心,A(0,-1),B(0,1),且GM→=λAB→(λ∈R).
(1)求点C的轨迹方程;
(2)若斜率为k的直线l与点C的轨迹交于不同两点P、Q,且满足|AP→|=|AQ→ |,试求k的取值范围.
解析:(1)设C(x,y),则Gx3,y3.
∵GM→=λAB→,(λ∈R),∴GM∥AB.
∵点M是三角形的外心,∴M点在x轴上,即Mx3,0.
又∵|MA→|=|MC→|,
∴ x32+(0+1)2= x3-x2+y2,
整理,得x23+y2=1,(x≠0),即为曲线C的方程.
(2)①当k=0时,l和椭圆C有不同两交点P、Q,根据椭圆对称性有|AP→|=|AQ→|.
②当k≠0时,可设l的方程为y=kx+m,
联立方程组y=kx+m,x23+y2=1,消去y,
整理,得(1+3k2)x2+6kmx+3(m2-1)=0.(*)
∵直线l和椭圆C交于不同两点,
∴Δ=(6km)2-4(1+3k2)×(m2-1)>0,
即1+3k2-m2>0.(**)
设P(x1,y1),Q(x2,y2),则x1,x2是方程(*)的两相异实根,
于是有x1+x2=-6km1+3k2.

上一页  [1] [2] [3] [4] [5]  下一页


Tag:高三数学学习方法高三数学学习方法介绍学习方法 - 高三学习方法 - 高三数学学习方法
》《高三解析几何测试题》相关文章