概要: [考查目的] 本题主要考查运用组合、概率知识,以及分步计数原理解决问题的能力,以及推理和运算能力. [解答提示]由题意,左端的六个接线点随机地平均分成三组有 种分法,同理右端的六个接线点也随机地平均分成三组有 种分法;要五个接收器能同时接收到信号,则需五个接收器与信号源串联在同一个线路中,即五个接收器的一个全排列,再将排列后的第一个元素与信号源左端连接,最后一个元素与信号源右端连接,所以符合条件的连接方式共有 种,所求的概率是 ,所以选D. 点评:本题要求学生能够熟练运用排列组合知识解决计数问题,并进一步求得概率问题,其中隐含着平均分组问题. 例6. (2007年全国II卷文) 从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件 :"取出的2件产品中至多有1件是二等品"的概率 . (1)求从该批产品中任取1件是二等品的概率 ; (2)若该批产品共100件,从中任意抽取2件,求事件 :"取出的2件产品中至少有一件二等品"的概率 . [考查目的]本小题主要考查相互独立事
概率统计的解题技巧,标签:高三数学教学设计模板,http://www.88haoxue.com
[考查目的] 本题主要考查运用组合、概率知识,以及分步计数原理解决问题的能力,以及推理和运算能力.
[解答提示]由题意,左端的六个接线点随机地平均分成三组有 种分法,同理右端的六个接线点也随机地平均分成三组有 种分法;要五个接收器能同时接收到信号,则需五个接收器与信号源串联在同一个线路中,即五个接收器的一个全排列,再将排列后的第一个元素与信号源左端连接,最后一个元素与信号源右端连接,所以符合条件的连接方式共有 种,所求的概率是 ,所以选D.
点评:本题要求学生能够熟练运用排列组合知识解决计数问题,并进一步求得概率问题,其中隐含着平均分组问题.
例6. (2007年全国II卷文)
从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件 :"取出的2件产品中至多有1件是二等品"的概率 .
(1)求从该批产品中任取1件是二等品的概率 ;
(2)若该批产品共100件,从中任意抽取2件,求事件 :"取出的2件产品中至少有一件二等品"的概率 .
[考查目的]本小题主要考查相互独立事件、互斥事件等的概率计算,运用数学知识解决问题的能力,以及推理与运算能力.
[解答过程](1)记 表示事件"取出的2件产品中无二等品",
表示事件"取出的2件产品中恰有1件二等品".
则 互斥,且 ,故
于是 .
解得 (舍去).
(2)记 表示事件"取出的2件产品中无二等品",则 .
若该批产品共100件,由(1)知其中二等品有 件,故 .
例7.(2006年上海卷)两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率
(结果用分数表示).
[考查目的] 本题主要考查运用排列和概率知识,以及分步计数原理解决问题的能力,以及推理和运算能力.
[解答提示]从两部不同的长篇小说8本书的排列方法有 种,左边4本恰好都属于同一部小说的的排列方法有 种.所以, 将符合条件的长篇小说任意地排成一排,左边4本恰好都属于同一部小说的概率是 种.所以,填 .
例8.( 2006年浙江卷)甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n个白球.由甲,乙两袋中各任取2个球.
(Ⅰ)若n=3,求取到的4个球全是红球的概率;(Ⅱ)若取到的4个球中至少有2个红球的概率为 ,求n.
[考查目的]本题主要考查排列组合、概率等基本知识,同时考察逻辑思维能力和数学应用能力.
[标准解答](I)记"取到的4个球全是红球"为事件 .
(II)记"取到的4个球至多有1个红球"为事件 ,"取到的4个球只有1个红球"为事件 ,"取到的4个球全是白球"为事件 .
由题意,得
所以, ,
化简,得 解得 ,或 (舍去),
故 .
例9. (2007年全国I卷文)
某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.
(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;
(Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率.
[考查目的]本小题主要考查相互独立事件、独立重复试验等的概率计算,运用数学知识解决问题的能力,以及推理与运算能力.
[解答过程](Ⅰ)记 表示事件:" 位顾客中至少 位采用一次性付款",则 表示事件:" 位顾客中无人采用一次性付款".
, .
(Ⅱ)记 表示事件:" 位顾客每人购买 件该商品,商场获得利润不超过 元".
表示事件:"购买该商品的 位顾客中无人采用分期付款".
表示事件:"购买该商品的 位顾客中恰有 位采用分期付款".
则 .
, .
.
例10.(2006年北京卷)某公司招聘员工,指定三门考试课程,有两种考试方案.
方案一:考试三门课程,至少有两门及格为考试通过;
方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.
假设某应聘者对三门指定课程考试及格的概率分别是 ,且三门课程考试是否及格相互之间没有影响.
(Ⅰ)分别求该应聘者用方案一和方案二时考试通过的概率;
(Ⅱ)试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)
[考查目的] 本题主要考查互斥事件有一个发生的概率和对立事件的概率,以及不等式等基本知识,同时考查逻辑思维能力和数学应用能力.
[标准解答]记该应聘者对三门指定课程考试及格的事件分别为A,B,C,
则P(A)=a,P(B)=b,P(C)=c.
(Ⅰ) 应聘者用方案一考试通过的概率
p1=P(A·B· )+P( ·B·C)+P(A· ·C)+P(A·B·C)
=a×b×(1-c)+(1-a)×b×c+a×(1-b)×c+a×b×c=ab+bc+ca-2abc.
www.88haoxue.com
应聘者用方案二考试通过的概率
p2= P(A·B)+ P(B·C)+ P(A·C)= ×(a×b+b×c+c×a)= (ab+bc+ca)
上一页 [1] [2] [3] [4] [5] [6] [7] 下一页
Tag:高三数学教学设计,高三数学教学设计模板,教学设计 - 数学教学设计 - 高三数学教学设计